ITWissen.info - Tech know how online

unsupervised learning

Unsupervised learning is a method used in machine learning. This is in contrast to supervised learning and reinforcement learning

. Unsupervised learning is concerned with drawing patterns and regularities from the input data and the dataset and using them to gain insights and conclusions for further processing. To determine regularities and tendencies, methods are used to aggregate the input data into clusters. In other words, the system determines fixed patterns that subsequently serve as a reference for pattern recognition, thus enabling objects or data to be assigned to a group. The method, which is effective in extracting the structure of data and enables computers to automatically find the correlations and patterns from huge amounts of data, is also used in data mining

. The aim of unsupervised learning is to determine relationships, structures and relations between data. Unsupervised learning model builds on existing data structures and integrates new data into the existing model. The disadvantage of unsupervised learning is that it is controlled because what is to be learned depends on the computers. The analysis depends on the quality of the data provided and the algorithm used for clustering.

Informationen zum Artikel
Englisch: unsupervised learning
Updated at: 29.01.2020
#Words: 270
Links: